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STEADY MULTILAYER FLOWS OF AN IDEAL INCOMPRESSIBLE FLUID 
OVER AN UNEVEN BOTTOM* 

K.A. BEZBANGV and A.M. TER-KBI~cGBoV 

A method of investigating the steady flow of an ideal incompressible 
stratified fluid over a horizontal bottom with a local irregularity is 
proposed. me fluid is composed of a finite number of layers, and the 
density and tangential components of the velocity vector have first-order 
discontinuities at their boundaries. When mixed Eulerian-Lagrangian 
variables are used, the initial problem reduces to a boundary value 
problem with a known boundary, and then to a non-linear integro-differential 
equation. The solution of the linearized problem is obtained in the form 
of the sum of Fourier series in terms of the eigenfunctione of the awil- 
iary spectral problem. The asymptotic behaviour of the waves appearing 
behind the bottcza irregularity is studied together with the simplifica- 
tions resulting from the assumption that the mean velocity of the 
unperturbed flow is close to one of the critical velocities of propagation 
of the long waves. A flow of a two-layer stream with a stepwise density 
distribution past an obstacle of arbitrary shape is solved as an example. 

Two possible formulations concerning the motion of a stratified 
fluid with jumps in the density and tangential velocity vector component 
were studied earlier in /l/. The problems of the stability of a 
stratified flow with density are reviewed in /2/. 

1. Formulation of the problem. We consider a steady plane flowofanidealincompress- 
ible stratifiedfluid over an uneven bottom. The fluid has n layers. The density p and 
tangential component of the velocity vector V undergo first-order discontinuities at the 
layer boundaries, and the pressure p is continuous. The Ox axis is directed along the 

Y 

horizontal level of the bottom, and the Oy axis vertically upwards (see the figure) . Let 
y = vk (2). k = 1, 2, . . ., n represent the unknown equations of the boundaries separating the 
layers, and let y =y,,(z) be a known equation describing the bottom. The function y,(z) is 
assumed to be continuous and finite (or decreasing fairly rapidly as .Z +fm). It is con- 

venienttoassumethatwhen y> Y, (z). we have a fictitious flow for which p = 0, V -0, p = 0. 

The functions p, V, p are continuously differentiable in every region 7-k: (--oo<s<-i-00, 

yk_l(z)<y<yt(z)), k=l, 2, . . . . s, and satisfy the system of equations of hydrodynamics which, 

after the substitution U = J&V, U = uii- uj, takes the form 

(V,U)=O, (U,Vp)=O, (UV)U=-gpj-Vp (1.1) 

where g is the acceleration due to gravity, and i, j are unit vectors of the Oz and Oy axes. 

Denoting by N, the unit normal to the curve y = yk(z) and by II% (2) the jump in the 
value of the function F(z,y) on passing through the k-th boundary of separation, we can write 
the boundary conditions in the form 

(U, N,) = Owheny = yR (z), k = 1, 2, . . ., n 

IPI, = 0, k = 1, 2, . . ., n 
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2. Formulation of the boundary value problem for the stream function. 
The first equation of (1.1) enables us to introduce the modified stream function 

u = @I#&/, v = - */ax (2.1) 

If we take into account the fact that the lines J, = const coincide with the true stream 

lines, then the boundary conditions will become 

$ (2, gk (2)) = I&, 0 = \po c *I c . ..c lp,,, k = 1, 2,. . ., s (2.2) 

where the equations of the separation boundaries &(x) and constants qpI; must be found in the 
course of the solution, 

Assuming that the function \I, (z,~) is continuous, we can show that p = p(o). We assume 
that the function decreases monotonically, in piecewise smooth, and has first-order discontinu- 
ities at the points qa, k = 2,2,...,n. Then (1.1) =a (2.1) yield /I.-S/ 

Vm$ + gyp’($) = QD’ (\p), (2, 8) E Tk, k = 1, 2, . . ., n (2.3) 

Q (*I = ‘/z (US + 8 + P + 6TYP (9) (2.4) 

Here and henceforth a prime denotes differentiation with respect to the corresponding 
argument, arid CD($) is the Bernoulii function. 

From (1.21, (2.2) and (2.4) we obtain the boundary conditions 

1% (QV -+- gYP ($) - Q, (@I* (2) = 0, k = i, 2, . . ., ri (2.5) 

'p (2. yk (d) = $kv @'lk (2) = 0, 9 (2, !/, (2)) = 0 

Equation (2.3) and boundary conditions (2.5) contain two unknown, piecewise-smooth 
functions p(9) and m(q), with first-order discontinuities at the points I#*. The form of 
these functions is determined from the condition than when I -+--a~, a one-dimensional flaw 
is specified with parameters p = R (g), V = V(g) i, p=P(bl) satisfying the hydrodynamic equations 
and boundary conditions (1.2). The peicewise smooth functions R (y) and V(g) have first-order 
diSCOntinUitieS at the points hk, k = ‘i,2,..., n,O(h,< . . ~ <a= H, ma satisfy the conai- 
tions 

R' @I) < 0, R (.a) > fit >O, V(u) > V, > 0 (2.6) 

while the pressure P (sr) is hydrostatic 

Here H is the depth of the unperturbed flow, while RS and VS are constants. The stream func- 
tion of one-dimensional flow is found from the solution of the Cauchy problem 

0’ 6) = 1/Rev (Y)t J, (0) = 09 
and this in turn yields 

rp(II) =Ja(&% 
a 

h#lk (x) = 0, k = i, 2, . . ., n - i 

a(Y) = T/RV (Y) (2.7) 

By virtue of the conditions (2.61, Eq.f2.7) hasa solution in y 

Y = n (MI O QIP QOo* 90 = Ip (H) (2.8) 

where ?)(I#) is a continuous, monotonically increasing piecewise smooth function and 1' (tP) has 
first-order discontinuities at the points $k = $(hk), k = 1,2,..., n - 1. Therefore, by virtue 
of (2.8) we have 

P ($9 = R 61 (tp))y Vo (q) = -v (rt ON), P, (9) = P (n(N) 

QI (9) = r/z P (9) V,e (9) + PO (9) + grl(\P) P (Ip) 

Some exact solutions of (2.3) were obtained earlier for the case when the functions p'(q) 
=a @' (9) were specified as linear, 
ities along the line 2 = 012,31. 

and the obstacle was modelled by distributing singular- 

3. Transforming the equation and boundary conditions. Let us carry out a 
variable change in Eq. (2.3) and boundary conditions (2.5), taking r and r) as the independent 
variables and y&n) as the unknown function. The variable r) connected with $ by relation 
(2.8), plays the part of the Lagrangian coordinate of the fluid particle. We shall also change 
to dimensionless coordinates , taking the stream depth H as the unit of length, and the numbers 
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asunitsof density and velocity, which can be interpreted as the mean density and mean velocity 
oftheone-dimensional flow. As a result we obtain the following boundary value problem for 
thesetof regions G: (-00 <I< +a?, Q._I<~ <qk), k = 1,2, . . ..n 

y (2, 0) = y, (r), iylx (z) = 0, k = 1, 2, ~ . . , n - 1 

lim Y 46 rl) = tl 

where 
X-CC 

(PO (q) = "/*R (rl)Va(rl)+ p (q) + VrlR (rl). v = WC2 (3.3) 

The lower indices z and q denote differentiation with respect to the corresponding 
variable. 

The function y= 11 satisfies (3.1) and boundary conditions (3.2), therefore we arrive, 
after the substitution 

Y = rl + w (2, PI) (3.4) 

at the non-linear boundary value? problem for the set G of regions. Here w is the perturbation 
of the one-dimensional flow, while Yrw and F,w are non-linear operators 

w (2, 0) = y. (z), [wlk (z) = 0, k = 1, 2, . . ., n - 1 
lim ~(2, q) = 0 
.7-OD 

To obtain the linearized equation of the boundary conditions it is sufficient to put 
Ir,w = O,F,w = 0 in (3.5). 

When carrying out a theoretical study, the passage to the traditional form of the equa- 
tion containing the Brent-Weisel frequency is not convenient, since the equation loses its 
divergent form. 

4. Basic integro-differential equation. Let us integrate (3.5) over the segment 
[q,fl and use the first boundary condition. Introducing the Lebesque-Stiltjes measure 

generated by the monotonic function R(q), we can write the equation obtained in the form 

--&(Q)j~+F1IL.)-V 

r( ll 

(4.1) 

Let us divide (4.1) by a%(n) and integrate over the segment IO;nl, using the second and 
third boundary condition of (3.5). We transform the resulting double integrals, by dividing 
in the inner integrals the segment of integration II, 11 into two subsegments [I, ?I] and frl,11 
and changing the order of integration. After this we introduce a symmetric function of two 
variables (Green's function) 

where e(l)= 0 when t< O,@(t)= 1 when t>O,*(O)= llg. 
As a result we obtain the following basic integro-differential equation with symmetric 

and continuous kernels: 

(4.3) 

0 0 

Equation (4.3) describes the formation of the surface and internal waves behind the 
obstacle. In the case of small perturbations we can restrict ourselves to the linearized 
equation obtained from (4.3) for F,ut = 0, F,w = 0 and solve it, using the Fourier method 

of separating the variables. Here it becomes necessary to study certain auxiliary eigenvalue 
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problems with an independent physical meaning. 

5. Investigation of the auxiliary integral equation. We begin by investigat- 
ingtheeigenvalue problem for a linear homogeneous integral equation 

We denote by L,'[O, II a Hilbert space of functions square integrable in the measure 

& 01) = --dR (tl). The space is of finite dimensions if R'(q)= 0 with '1 E (hr-1. A&), k = L 2, 
. . ., n, and of infinite dimensions if R'(q)<0 on the set with non-zero measure. Since the 
function G(q, e) is continuous and synsnetric, it follows that the integral operator in (5.1) 
is completely continuous and selfconjugate in L,* IO, 11, and the Hilbert-Schmidt theory /6-E/ 
holds for the integral equation (5.1). The basic facts of this theory will be used below 
without further reference. 

All eigenvalues of (5.1) are real. If the space L,zIO, 11 is of infinite dimension, then 

a denumerable set of eigenvalues {vi} and an orthonormed system of eigenfunctions I?9 (rl)l 
complete in L,'lO, 11 both exist. The completeness of the system of eigenfunctions, not only 

in the domain of values of the integral operator but also in L,,AO,11, follows from the easily 

confirmed fact that a continuous function orthogonal to the kernel G(q,&) must be identically 
equal to zero. All eigenvalues are isolated and v1 *+a, as i ++oo. It can also be shown 
that all eigenvalues vi> 0, since the kernel G(q,&) is positive definite. 

Indeed, the eigenfunction m(q) corresponding to the eigenvalue v must be a solution of 
the boundary value problem 

+(,pm 9) -Vvll'(q)g,(?l)=o, hk-l<q<h,, k==1,2,..., I& 

[ o'(q)~-~R(q)cp(q)]~=O,, k=l,2,....n 

Iqlk = 0, k = 1, . . ., n - 1, cp (0) = 0 

Multiplying (5.2) by cp (T)), integrating from 0 to 1 and repeating the arguments used in 
deriving (4.11, we obtain 

Moreover, all eigenvalues are simple. This follows from the theorem stating that the 
solution of the Cauchy problem for a second-degree equation is unique. The iterated kernels 
decompose into bilinear series 

For m>2 the bilinear series converges absolutely and uniformly in e and V) on IO, 
11 x [O, 11. When m=l,2, the series converge absolutely and uniformly on any compactum belong- 
ing to the set on which the measure dR (q)dR(z) does not vanish (a generalization of Mercer's 
theorem). 

Integrating (5.2) we can obtain a relation of use in subsequent investigation. 

Considering the inhomogeneous equation (5.1) with right-hand side f($~L,,*[o, 11, we 
find that its solution is expressed in terms of-the resolvent l'(q, <,v) as follows: 

(5.5) 

In this case the series in (5.5) converges absolutely and uniformly on IO,11 X lO,ll, and 
the resolvent becomes a continuous function of the variables &, VJ and satisfies the integral 
relation 
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The resolvent is a meromorphic function of the parameter v with simple poles near the 
pole v = VI, and can be expanded in a Laurent series 

The coefficients of the series (5.7) are continuous on LO,11 X [O, 11. 
Let us use formula (5.5) in which the function f(q) is equal to the right-hand side of 

(4.3), and the identity (5.6) for the resolvent. Then we obtain, for the unknown function, 
w (2. q) 1 a non-linear integro-differential equation 

w(r* 3 =x(q,v)y.(z)-~Sa'(E)I'(q,E,Y)~(.,E)dE+~w (5.8) 

cDw=- fF1wdr+ v s’r”iq. s, v)(~Flw+b~+ 

0 0 cl 
1 

s 
’ aa (I) r (3 EI 4 -$ FG.0 e, x (rlt v) = 1 - y f r (11. Et v) dp (3 

” II 

where the non-linear operators F,w and F,w are given by (3.6). 
Thus (5.8) represents an exact integro-differential equation describing wave propagation 

behind the obstacle. Putting @w = 0 in (5.8), we obtain a linear integro-differential 
equation which we shall solve below using the Fourier method. Here the study of the prop- 
erties of the eigenvalues and eigenfunctions of the following homogeneous integral Fredholm 
equation with continuous symmetrizable kernel, is of fundamental importance: 

s(q)=h ~sVW(q~ 8, v)s(E)de (5.9) 
0 

~11 eigenvalues L1 (v) of (5 -9) are simple and real. The simplicity of the eigenvalues 
follows from the equivalence of (5.9) and the eigenvalue boundary value problem for a linear, 
second-order differential equation and the uniqueness of the solution of the Cauchy problem 
for such an equation. The question of the sign of hi(v) needs extra investigation. Using 
the arguments employed in deriving (5.3)) we can show that when v < vr, all a, (v)< 0. Thus 
if the flow rate exceeds any of the critical velocities ci= T/jZ& of propagation of long 
waves, then all eigenvalues &< 0. This means that, as is shown below, at a considerable 
distance downstream no surface and internal waves are formed. 

Since r (q, E,v) is a meromorphic function of the parameter v, it follows that the 
methods of complex analysis can be used to study the dependence of the eigenvalues on the 
parameter v. However, a comprehensive study is difficult. In the case when the parameter v 
is close to one of the critical values vtr the methods of analytic perturbation theory /8/ 
become effective. It can be shown that a unique eigenvalue h,(v) +O exists when Y +vl, 
and the asymptotic form of this number and of the corresponding eigenfunction can be found 

21 (q. v) = cpl(q)/l/;;l;; + (v - ~1) Ql h y) 

&(v)=(v -VW& + c(v - vl)r A,,- --I'~I1IP=Ss~(q)~l'(q)dq 
0 

(5.10) 

Here the function Qi(q, v) is analytic near the point v = V( and continuous in the 
variables 5 and q. 

A number of useful corollaries can be derived from (5.10). Before anything else, we 

note that I, (v)>O when v>vl and h,(v)<0 when v<vl. Since the eigenfunctions zi (q,V) 
are orthogonal with weight aa (q) on the segment IO,11, it follows that as v -+vl, 

(sil B~)=Sn'(q)s<(q* ")ml(q)dq =Q(v-vJ* i#l (5.11) 

(sty ml) l f/All + Q (v - v,), II 21 II = 1 + Q (v - v0 

We also note that the kernel I? (q,E,v) can be written in the form 

r (q, 5, v) = sf (E, v)%(q, v)/h, + rl (q, 5, v) (5.12) 

where the kernel r,(q, 5, v) is orthogonal with weight a*(q), and is of the eigenfunction 

21 (q, v). From (5.10) and (5.11) it follows that the kernel rr (q,f,v) is analytic in some 
neighbourhood of the point v = v, and, since it is also continuous in q, we have by virtue 
of Parseval's equality, 

(5.13) 
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where the index 1 on the summation sign means that the index i=l is excluded from the 

summation, and the constants C and & are independent of t) and v. 

6. Solution of the integro-differential equation of the flow past an ob- 
stacle. In order to deal with the classical type solutions we will assume, that the func- 
tion ~~(2) is finite and triply continuously differentiable, and 

~o(z)=6h(z), +j-h(.)d+=f (6.1 
-01 

T xh(x)dz- R, +S-,*"(z)Jdr=M 
-00 -DD 

Here 6 is a small parameter whose magnitude should, generally speaking, be compatible 
with v, andlf and M are numbers of the order of unity. 

Putting @w = 0 in (5.81, we obtain the linearized equation 
1 

w (2, rl) = - s a’ (8 r (a E. v) G (G E) d& -x 01) YO” (4 
0 

(6.2) 

We will seek the solution of (6.2) in the form of a Fourier series in the orthonormed 
system of eigenfunctions of (5.9) 

We shall also expand the function x(n) in a Fourier 
obtain 

(6.3) 

series over the system (21 (q, v)) to 

(6.4) 

If v+XQ+o, then by virtue of (5.10) and (5.4) we have 

Substituting the expansions (6.3) and (6.4) into (6.2), we obtain the equations for 
determining the unknown functions Bi (z) 

The solution of (6.6) which vanishes together with its derivative as x-t- oo, has the 
form 

Integrating by 

vo”(E)sin K@-&E)& ai> 0 (6.7) 

parts we can establish that 

Bi (Z) - -$ (&I” (3) sgn hi - G (4) 

Ci(Z)+- 5 Y0’(E)exp(-_lI-_lI)llen(t-&E)41 h<O 

68) 

Further, formulas (6.31, (6.8) and the last relation of (6.2) together yield 

w(x* M--Y0 (.t) 7. (11)-Yyo"(X)X(t)) + j&c,(r)l&. v) 
i-1 * 

(6.9) 



Standard estimates based on the use of Bessel's inequality show 
converges uniformly in t 

that the series in (6.9) 

(610) 

Expansion (6.9) also representes the generalized solution of the integro-differential 
equation (6.2), provided.that the derivatives in (6.9) are interpreted in the sense of the 
Schwarts theory of distributions. If on the other hand we demand that' the function YO (r) be 
exceptionally smooth, then the generalized solution will also be classical. 

7. Investigation of the wave pattern behind the obstacle. It is evident from 
formulas (6.81, (6.9) that if the carrier of the function go(z) lies on the segment [-t,Ll, 
then the flow is unperturbed by the waves at s< -L. If on the other hand z> L, then we 
obtain from (6.8) &>O, 

Ct (2) = DI Co9 T/&r + Et sin v/x,, (7.1) 

o,P~~~d"'(E)ccs I/ii;Ed$ &=\myO" (~)sin~'gEcQ 
-0D 

When z>L and hi<O, we have 

bmax~h"(z) 
IG(s 2)/m LW-JWl(s--)) 

1 

Using (7.1) and (6.8) we obtain from (6.9) for z> L 

(7.2) 

A prime accompanying the summation sign means that the summation is carried out only 
over those indices for which &> 0. 

Now let O<v-~~(6, where the quantity 6, is sufficiently small. Using the estimate 
(5.13) and repeating the estimate (6.10), we obtain 

(7.4) 

x1ol)==l- v s rl h 5, v) dv (El 
0 

The function r,(q,&v) is defined in (5.12) and the constant C is independentof n and 
V. From inequality (7.4) it follows that when r> L, then the sum of all terms in (6.9) 
except the term with index 1, is of order 6 as v +vl -I- 0. 

We shall show that when hl>O, then the I-th term is of lower order. Using tnd 

(6.8) for z> L and integrating (6.7) by parts, we obtain 

where the second term within the brackets is not greater than 1/.&K. 

6 
Substituting (7.5) into (6.9) and using (6.5) and (7.3) we obtain, for r>L, O<V -VI< 

11 
L 

aa* (0) ‘PI’ (0) ‘PI w sin 1/F 5 ’ w(x, ‘I)=- 
VP- v,)+r s A(%)cos C/T%d%+6wo(z, 99 v), Iwo(z, q, v)I<C (7.6) 

-L 

where the constant C is independent of v. Further, when x>L, we obtain by virtue of (6.11, 

w (0) V,'(O) . 
w(z, q)=- l/tv_vljAIL slnVGw,h) +0(h) (7.7) 

To satisfy the assumptions of the linear theory, we must make the small parameter 6 In 
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(7:7) compatible with v-v,. It is sufficient to assume that 6 = e(fG). It also follows 
from (6.8) and (6.9) that the perturbation UJ (s,q) is small provided that ye(S),p; {z),&%) and 

Ye”’ (4. are small. If the assumption that go(x) is small is justified, then the assumptions 

that ~O'(z),~O"(z) and gO"'(z) become superfluous. Indeed, we can dismiss these assumptions 
since the forces of buoyancy have little effect on the character of the flow near the bottom. 

Here the frictional forces leading to the formation of a boundary layer and Stagnation zones 
near the obstacle axe much swre important. We can take as VP(t) the equation of the stream 

line forming the upper boundary of the boundary layer, the latter being sufficiently smooth. 

We also note that formula (7.6) shows the effect of the resonant smplification of the 
perturbation generated in the stream by the irregularity at the bottom, of order 6. If v 
is nearly critical, then the wave amplitude is, generally speaking, of order &/JfG,. 

8. Flow of a two-layer fluid past ELXI obstacle. We consider, as the simplest 
example illustrating the proposed method, the flow of a two-layer fluid with stepwise density 
distribution, past an obstacle of arbitrary shape (E>O is a small parameter) 

i+-e8orO<rl<h 
i--a,n<gtl<*. 

R(n)- 
0, 9>1 

0 
Then the function 

will be peicewise linear. We have, with accuracy of order d 

g(0) = 0, p(h) = h - ahh, + dhha, q (1) - f +s’M, 

Green's function G&,8) is also piecewise linear and 

G(h, k) = G (h, 1) = g(h), G (1.1) = q(i) 

From the integral equation (5.1) we have 

v-'cp (nt - GAG (rl,N + (i -a) BG &I> i), d = 'P (k), B - cp (i) f3.i) 

Substituting into (8.1)~)~ h and n= 1, we arrive at the algebraic system in the unknowns 
A and B. Equating to zero the determinant of this system, we obtain the characteristic 
equation, from which we obtain 

VI, -1 - i - shho + e.=hhOa, v,-= = ehh, - e=hh#’ 

The corresponding eigenfunctions are piecewise linear ana 

The normed eigenfunctions have, with an accuracy of up to O(e), I the form 

We see that the function qI(n) attains its maximum when n= i, and tpt(n) when n=&. 
The quantities appearing in (7.71 have the following form with an accuracy of up to G(e): 

Po'(O)==i, R'(O) = - ti;b, AU=+-. Air=-&- 

o(O)= i, Al= 3(v- I), ~*=+vM.4) 
From (8.2) it follows that in the case of the first (barotropic) mode the greatest 

perturbation occurs at the free boundary. We find the asymptotic~expression for the free 
boundary from (3.4) and (7.7) 

For the second 
of separation whose 

ut@)=i- Tz- -sin~TiT=T)z 

(baroclinic) mode we find the greatest perturbation occurs at the boundary 
asymptotic formula has the form 

YL(=)3k(f-+JL(y.si*J/T+) (3.3) 

v*~avhh@= sH&(&-RR,) 
r'(&~l-tX&) 

The quantitiy V* on the right hand side of (8.31 is written in terms of the dimensional 
variables where RI,&, and' R,, II, denote the density and thickness of the lower and upper 
layer respectively. The critical value of the parameter v* is equal to unity, and the critical 
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value of the rate of propagation of the long waves at the boundary of separation corresponds 
to it. 

1. 

2. 

3. 

4. 
5. 
6. 
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ON VORTICITY-INDUCED WAVES IN A HOMOGENEOUS INCOttPRESSIBLE FLUID* 

I.M. MINDLIN 

The existence of vortex-induced waves in a homogeneous incompressible fluid 
is proved. The boundary of the vortex represents a cylindrical rotating 
fluid surface of stable form. The non-linear dispersion relation, the 
form of the vortex and the stream function are found for the vortices 
bounded by an almost circular cylinder, and for the vortex-induced waves. 
The character and special features of the oscillation of the velocity 
field are explained. 

The problem is reduced to that of proving the existence of a branching 
solution of the non-linear integral equation and to effective determina- 
tion of the solution and the bifurcation value of the parameter. An 
iterative method is proposed enabling the simultaneous determination at 
every stage of the approximation to the branching solution and bifurcation 
value of the parameter. The convergence of the method over a certain 
range of parameters is proved. 

The possibility of the existence of rotating cylindrical vortices 
retaining the non-circular form of the transverse cross-section was 
shown by Lamb /l/ who obtained the linearized dispersion relation (3.2). 
Following /2/ we shall call such vortices "vortons". Deem and Zabusky 
carried out a numerical experiment in /2/ and they suggest that the result 
proves the existence of vortons. It was also found that the rotation 
frequency of these vortices is less than the value obtained from (3.2). 

The vortons and vorton-induced waves are of interest (see the foreword 
to /2/), since the results of the numerical experiment are interpreted 
as manifestations of the "soliton-like" behaviour of the waves in a two- 
dimensional medium. 

1. Formulation of the problem. Consider the flow of an ideal homogeneous incompress- 
ible and unbounded fluid in a direction parallel to the zoy plane (Fiq.1). We denote by 

0x9 OY the fixed axes and by oz,,oy, the axes rotating with constant angular velocity Q, r. 8 
are polar coordinates in the roy plane, r, B are polar coordinates in the s,oy, plane, t 

is time, q(r, 8, t) denotes the absolute velocity of the fluid (relative to the fixed axes), 
4,. qs E Q,, is the radial and'tangential component of the absolute velocity, and 6 =rotq = 

Si,, i, is the unit vector normal to the zoy plane (and to the XlOY,) plane). When t =o, 

the ox and oxraxes coincide. 
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